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SUMMARY 
A high-order Godunov-type scheme based on MUSCL variable extrapolation and slope limiters is 
presented for the resolution of 2D free-surface flow equations. In order to apply a finite volume technique of 
integration over body-fitted grids, the construction of an approximate Jacobian (Roe type) of the normal 
flux function is proposed. This procedure allows conservative upwind discretization of the equations for 
arbitrary cell shapes. The main advantage of the model stems from the adaptability of the grid to the 
geometry of the problem and the subsequent ability to produce correct results near the boundaries. 
Verification of the technique is made by comparison with analytical solutions and very good agreement is 
found. Three cases of rapidly varying two-dimensional flows are presented to show the efficiency and 
stability of this method, which contains no terms depending on adjustable parameters. It can be considered 
well suited for computation of rather complex free-surface two-dimensional problems. 
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1. INTRODUCTION 

In recent years many advances have been made in the study of hyperbolic partial differential 
equations and in the theory of one-dimensional difference operators applied to hyperbolic partial 
differential equations describing fluid flows.' Much is known about numerical techniques for 
solving conservation laws, i.e. equations of the form 

Solutions of such equations produce discontinuities in general (unlessfis a linear function of u) 
and numerical methods have been developed that can handle these non-linear features. 

The numerical resolution of systems of conservation laws stems from the work of Lax and 
Wendroff (1960)," who formally expressed the importance of the conservative discretizations to 
capture automatically the discontinuities present in the solution. In the 1970s the concepts of 
artificial viscosity and modified equation were introduced and the numerical schemes such as 
Lax- Wendroff or MacCormack became popular. 

At the end of the 1970s the original ideas of Godunov about the incorporation of the physical 
reality to the solution of simple problems were reconsidered. At the same time van Leer analysed 

027 1-209 1/93/0604&9-17$13.50 
( i  1993 by John Wiley & Sons, Ltd. 

Received June 1992 
Revised November 1992 



490 F. ALCRUDO AND P. GARCIA-NAVARRO 

the properties of conservation and monotonicity for convection problems in a series of papers. 
This gave rise to an increase on the interest in the upwind schemes due to the appearance of the 
concept of approximate Riemann solvers in the 1980s. These made possible the formal general- 
ization of the upwind schemes to systems of equations and led to two new techniques known as 
flux vector splitting and flux diflerence splitting. 

Indeed, in the 1980s the classical schemes have become less widely used following the work of 
Harten and the advent of adaptive TVD schemes, such as those of Osher, Roe, van Leer, which 
make use o f jux  limiters and are able to generate successfully sharp solution profiles near fronts, 
at  the same time being accurate in regions of smooth data. It is near these discontinuities that 
classical schemes show oscillatory behaviour and require the addition of artificial viscosity. 

However, all the theory concerning conservation laws and flux limiters has been developed 
only in one space dimension. What happens when we are faced with a two-dimensional problem 
in computational fluid dynamics remains an unanswered question, even more if dealing with 
free-surface flows. There are only a few truly two-dimensional approaches to solving such 
problems and are generally based in operator splitting. These consist on regarding the two- 
dimensional problem as a two one-dimensional problem and then using the 1D scheme indi- 
vidually. A rectangular 2D mesh of grid points is required in this approach. 

Despite excellent results obtained via operator splitting, certain questions could arisl: about the 
convenience of employing it when solving the two-dimensional open channel equations. Since no 
analysis has been done with respect to 2D non-linear systems of equations, this paper is 
a contribution to the evidence for and against a genuinely two-dimensional technique. 

Assuming the validity of the shallow-water approach, a conservative formulation of the 2D 
system is applied together with the characteristic formulation necessary to ensure an adequate 
boundary problem treatment. A finite volume technique based on a high-resolution Godunov- 
type scheme is described for the discretization of the partial difference equations. The method has 
been devised to perform integration on body-fitted meshes in an attempt to overcome the 
difficulty of having curved boundaries. 

2. GOVERNING EQUATIONS 

One of the more widely used approaches for the description of free-surface flows is that of shallow 
water, which can be obtained from the depth-averaged Navier-Stokes equations. The resulting 
system corresponds to the one of a compressible fluid (in which the depth plays the role of density) 
similar to an isentropic gas with y = 2.  This system represents the mass and momentum conserva- 
tion and its resolution may lead to discontinuities. It is a partial differential non-linear system of 
equations well suited for the application of the above-stated numerical techniques. 

In the present work, the terms describing the diffusion of momentum due to turbulence are 
considered negligible and not included in the equations, which may be written in conservative 
form as follows: 

au 
- + VF=S. 
at 

Or, more commonly, as 

au a~ ac 
-+-+-=S, 
at ax ay (3) 

since F=(E, C ) .  
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The vector of unknowns is 

And the Cartesian components of the flux 

49 1 

(4) 

where k represents the water depth, u and v stand for the depth-averaged velocity components 
along the x and y directions, respectively, and g is the acceleration due to gravity. 

The right-hand side of the equation contains the sources and sinks of momentum. It accounts 
for the bed slopes and the friction losses along the two co-ordinate directions. In this paper, only 
the numerical treatment of the homogeneous system will be described. 

It will be later on useful to have the homogeneous system of equations expressed in the 
equivalent non-conservative form 

L7u au au 
-+A - + B  -=O. 
2t ax 2 y  

The Jacobians of the fluxes are 

where the wave speed c = ,/(gk). 
The respective eigenvalues are 

and the eigenvectors are 

0 0 1  
B=-=[ (7 G -uv v u ) ,  

au -v2+c2 0 2v 

a'=u+c, 

(7) 

They correspond to the characteristic speeds and directions and, therefore, inform about the 
propagation of information, providing a means of building up approximations which transmit 
information only in the correct directions. 

3. 1D NUMERICAL SCHEME 

For the sake of clarity, the numerical scheme used to discretize (2) is described first in the scalar 
one-dimensional case, that is, taking a domain of integration (x, t )  characterized by points (xi, L " ) ~  
where xi = i Ax and t" = n At. 
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When solving a one-dimensional equation of the form (l), the solution at time (n + 1)At for the 
computational point i is obtained by application of a conservative second order in space and time 
predictor-corrector sequence as follows: 

At 
2Ax 

up= UY-- -fi*-"1,2), 

The quantityfir 1 /2  represents the numerical flux through the wall between cells i and i + 1 and 
is calculated as follows: 

f;: 1/2 =!?[fR" +h." - lei+ 1/2 I (UR-UL)], (12) 
uR and uL being two states on both sides of the wall at the time level n At obtained from the initial 
distribution of the discrete function u; at the grid points and the local slopes of this distribution, 
following a MUSCL' procedure, which is illustrated in Figure 1: 

The local slopes of the discrete function are calculated as 

The presence of these two intermediate states in the numerical flux is equivalent to having 
a piecewise linear initial distribution of the function and, accordingly, renders the Godunov-type 
scheme second-order-accurate in space. On the other hand, it is important to remark that 
second-order accuracy in time is achieved by the predictor integration over one-half time step. 

The limiter cp in (14) is a non-linear function of the ratio of adjacent gradients and is responsible 
for obtaining non-oscillatory solutions despite the application of a second-order scheme to 
problems containing discontinuities. Several forms of the function can be found in the literature,' 
their effect being basically the same, adding sufficient dissipation to the scheme to guarantee 
monotonicity when there is a steep gradient, while retaining second-order accuracy in regions of 
smooth flow. 

I u I+2, - 

I I 1 I 1 ) X  
' 1-1 ' i I i + l  ' i+2 ' 

i-112 i+1/2 i+3/2 

Figure 1. Linear one-sided variable extrapolation of interface values. 
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On the other hand, fR =f(u,), fL =f(uL) and & +  = 6(uR, uL) is an approximation to the 
characteristic speed at the wall defined as follows: 

u R = u L  if u R = u L ,  

where a = af/au. 

function evaluated at the predictor values of the functions u;, u:: 
The quantityh?:,, present in the case of the corrector step, represents the numerical flux 

These states can now be calculated from the predictor values of the function. It is worth noting 
that the values of the local slopes evaluated at time level n At should be used in these definitions: 

4. 2D GENERALIZATION 

In this section the extension of the algorithm introduced in Section 3 to the two-dimensional case 
is presented and the finite volume integration procedure applied is described. 

The first problem under consideration is the discretization of the homogeneous part of the 
system represented by equation (2): 

au -+ VF = 0. 
at  

This is done in a spatially 2D domain of integration divided into a set of cells labelled (i,j)$ each of 
them identified by the corresponding centre point. The grid is not forced to be rectangular; on the 
contrary, the shape and size of the cells can be non-uniform, it being nevertheless advisable for the 
sake of accuracy to follow a certain degree of smoothness when defining the mesh variation. In 
Figure 2, the elemental cell ( i ,  j )  and its immediate neighbours are sketched. 

The equations are integrated by a finite volume technique on each of these cells covering the 
whole domain, so that it is convenient to rewrite equation (18) in integral form: 

The application of Gauss theorem to the integral of the second term gives 

where the volume integral actually represents integral of the time evolution of the function over 
the area of the cell, whilst the surface integral is the total normal flux through the cell boundaries. 
The normal vectors to the cell walls are defined as shown in Figure 3. The scalar product can be 
expressed in terms of the Cartesian components: 

F n = En, + Gn,. (21) 
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X 

b 

Figure 2. Two-dimensional cells in arbitrary co-ordinates. 

Y 

I 

Figure 3. Normal vectors and side length in a cell of the two-dimensional grid 

Assuming U to be variable with t but constant over the cell, equation (20) becomes 

Equation (22) can be discretized now provided that the surface integral is approximated by a sum 
over the four walls of a numerical flux in the following way: 

where ds, are, respectively, the lengths of the four walls which contour the cell i, j .  
In this work, the applied numerical flux function is the one corresponding to the high-order 

Godunov-type scheme described in Section 3. It can be generalized for the 2 D  system case so that, 
for the wall corresponding to r = i + 1/2, j has the following form: 

(F* . n)i+ 1:2, j = t C F ,  + F L -  I A;+ lj2, jI (UR-UL)I . n,+ 112, j ,  (24) 

where Ai+ l ,2 , j  is the Jacobian matrix of the projection of the flux F in the normal direction 
evaluated at some average of the variables at states UR, UL: 

0 4 d(F*n)  
A=-=[ dU 

(c2 - u2)nx  - uvn, 2un, - vn, un, 
- uvn, + (c2 - v2) ny vn, un, + 2vn,  
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Following the technique proposed by Roe for constructing a suitable coefficient matrix to define 
a modified, linear but equivalent system of conservation laws, we have searched for a matrix 

5' = 6 - n + C= iin, + fin, + C", 

with eigenvalues of the form3 

2 = 6 - n = iin, + Cn,, (26) 
ii3 = 6 - n - c" = iin, + fin,- E ,  

where 6 = (6, I?), and eigenvectors of the form 

They are written in terms of the average values ii,v", and C", which have been found to be 

If the approximate 
transformed as 

where the Ck are the 

Jacobian matrix is used instead of A, the numerical flux (24) can be 

1 2 '[ k = l  

3 

( F * - I I ) ~ + ~ , ~ , ~ = -  FR+FL- C EkliiklZk - n i + l , 2 , j ,  

coefficients of the decomposition in the basis of eigenvectors of d, 
3 

UR-UL= C Ekek, 
k =  1 

and are dependent on the jumps A = (  )R-(  )L in the functions: 

(32) 
Ah 1 
2 -22 

g 1 + 3  =-+- [A(hu)n, + A(hv)n,-ii * ri Ah] 

(33) 
1 

Ez  = { [A (ho) - EAh] n, - (A (hu) - GAh) n,, }. 
C 

The intermediate states UR, UL are defined at the cellwalls. They are extrapolated from the 
centrepoints of the neighbouring cells by using slope limiters in a similar way as was done in the 
1D case. They are responsible for the high-order accuracy of the scheme. Their expressions when 
dealing, for instance, with wall (i + 1/2, j )  are 

where formula (35) should be interpreted componentwise for the vector U. 
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4.1. Numerical stability 

equation of the form 
The stability of an unsplit two-dimensional scheme when used to solve a linear advection 

au au au 
at ax ay -+~-+b-=0,  a,b>O 

is restricted by the CFL-like condition4 

A somewhat different criterion, better suited for the finite volume formulation, has been adopted 
for the actual computation: 

min {dri, j }  

2 max { (c  + JCU’ + V ~ I ) ~ ,  j >  ’ 
A t <  

In the above inequality, the quantities dri,j  represent the whole set of distances between every 
centrepoint ( i , j )  and those of its four adjacent cells. 

4.2. Initial and boundary conditions 

The information required to start the time evolution computation on the two-dimensional 
domain has been provided by specifying the values of the three dependent variables h, u, u at every 
grid point (i, j )  for time t = O ,  and assuming them to be uniform over the cell represented by that 
point. 

The numerical treatment of the boundary problem has been intended to be as correctly as 
possible and, hence, the theory of characteristics in two dimensions has been followed. As is well 
known, a consistent set of boundary conditions is required to complement the flow equations. 
The local value of the Froude number is what determines the flow regime and, accordingly, the 
correct number of boundary conditions to be applied. For subcritical flow, two external condi- 
tions must be specified at inflow boundaries, whereas only one is required at the outflow 
boundary. Two-dimensional supercritical flow requires the imposition of three inflow boundary 
conditions and none at the downstream side, where the flow remains free and only influenced by 
the information coming from the interior points. 

In the particular case of solid walls limiting the flow field, the velocity is projected into the 
tangential and normal directions to the wall. Then the latter is set equal to zero in order to 
represent no flux through the solid boundary. 

Use is made of the information carried by the outgoing bicharacteristics (Riemann invariants) 
in order to calculate the remaining unknown variables at the borders. 

5. NUMERICAL RESULTS 

5.1. Oblique hydraulic jump 

A fundamental aspect when dealing with numerical schemes is to be able to check their 
predictions against suitable test problems, preferably ones for which an exact solution is 
available. Such is the case for the first example presented, in which an oblique hydraulic jump is 
induced by means of an interaction between a supercritical flow and a converging wall deflected 
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Shock front 

==Jjfip --I 

Figure 4. Planar view of oblique shock front in supercritical flow. 
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Figure 5(a). Grid used in the oblique hydraulic jump test case. 

through an angle 8. As reported in the literature, the equation for the angle formed by the shock 
wave is defined in Figure 4. 

A 41 x3 1 non-rectangular mesh, displayed in Figure 5(a), was used to reproduce the discontinu- 
ous flow in a non-prismatic channel where 0 = 8.95" for the converging side. The chosen initial 
conditions were ho(i , j)= 1 m, u,( i , j )=8 .57  m/s and uo( i , j )=O, that is, a uniform supercritical 
flow with Fro = 2.74. Supercritical flow boundary conditions were applied both upstream and 
downstream. 

The exact solution corresponding to the upstream flow and geometry imposed was calculated. 
The predicted values were h2 = 1.5 m, /u2  I = 7.9556, Fv2 = 2.075 for the downstream variables and 
/3= 30" for the angle of the jump connecting them to the given upstream conditions. 

Using the proposed scheme, the computation converged to the steady state from the given 
initial situation. As can be verified from Figure 5(b), the agreement of the numerical results with 
the correct solution was very good despite the fact that the grid could have been improved. The 
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Figure 5(b). Depth contour plot showing oblique hydraulic jump. 

angle formed by the oblique hydraulic jump was closely reproduced (the error found was of 1.56 
per cent) as well as the values of the flow variables on both sides of it (h2 = 1.5049 m, Iu2 I = 7.9419, 
Fr2 = 2.068) and a discontinuous water surface devoid of oscillations was obtained. 

5.2. Dambreak problem 

Various solutions of the one-dimensional shallow-water equations for the initial boundary 
value of dambreak flow have recently become available. When the assumptions underlying these 
models were justified, the results were excellent. Some numerical results on the mathematical 
modelling of the two-dimensional dambreak problem have also been r e p ~ r t e d . ~ - ~  

The high-order Godunov-type scheme together with the minmod slope limiter is applied to the 
test case computed by Fennema et al.5 for partial failure of a dam in a 200 x 200 m basin of 
simplified geometry depicted in Figure 6. The initial height ratio is 2, with values of hol = 10 m 
and hO2 = 5 m on both sides of an idealized dam that has been represented just as a mathematical 
discontinuity on the water surface. Water is released into the downstream side through a breach 
75 m wide, forming a wave that propagates while spreading laterally. At the same time, a negative 
wave spreads into the reservoir, with its speed depending on the local undisturbed depth of water. 

A 40 x 40 cell rectangular grid was chosen in this case taking into account the regular shape of 
the domain of integration. Figure 7 shows a 3D view of the water surface elevation as obtained at 
a time t = 7.2 s in which the waves have not yet reached all the boundaries. It has to be remarked 
that the method needs no tuning of any adjustable parameter such as artificial viscosity 
coefficients as other methods do. Since the computation is inviscid, strong rarefactions involving 
large velocity gradients appear around the edges of the breach and represent a demanding test for 
the numerical procedure. They manifest as abrupt depressions in the water surface elevation in 
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x=200 
x = o  y = 2 0 0  
y = 2 0 0  

x = o  x = 2 0 0  
y = o  y = o  

Figure 6. Reservoir geometry for the example of partial failure of a dam. 

Figure 7. Water surface elevation at t =7.2 s after breaking of the dam. 

these regions but, as can be observed, the numerical solution shows up as being stable and 
well-behaved everywhere. 

Figure 8(a) provides a map of level lines for the depth, and the velocity field for this test is 
plotted in Figure 8(b) making plain the strongly two-dimensional character of the flow. 

5.3. Breaking o f a  circular dam 

Another interesting test case for the analysis of the algorithm performance is that of the 
breaking of a dam of cylindrical geometry and the time evolution of the subsequent waves. The 
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Figure 8(a). Contour plot showing depth distribution for the partial dambreak test case. 
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Figure X(b). Velocity field for the partial dambreak test case. 
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high symmetry of the problem renders it an adequate example to evidence the advantages of 
taking body-fitted co-ordinates instead of a rectangular mesh for the numerical integration. 

It is well known that, when transforming the flow equations to polar co-ordinates, the 
mathematical problem of the breaking of a circular dam becomes one-dimensional along the 
radial direction, that is, independent of the polar angle. Even though there is not an exact solution 
to compare with, this enables the possibility of checking the ability of the method to conserve 
symmetries. 

For the sake of comparison, two calculations were made, one using a rectangular grid 
(following the Cartesian co-ordinates) and another one in a circular mesh (following the r, 8 polar 
co-ordinates). The rectangular grid was constructed with 50 x 50 cells of individual size 1 x 1 m. 
The circular grid was 50 x 25 (thus, half the number of points of the previous one), that is, 50 cells 
following the tangential direction versus 25 cells of 1 m length along the radial direction. They are 
displayed in Figures 9(a) and 9(b), respectively. 

The initial conditions were the same for both cases, two regions of still water separated by 
a cylindrical wall (radius = 11 m) so that, on the inner side hol = 10 m, whilst hoz = 1 m outside the 
dam. All the boundaries were supposed to be rigid. 

The numerical results obtained with the high-order Godunov scheme on each of the grids for 
time t=0.69 s are shown in Figures 10-12. Figures 10(a) and 1qb) are plots of the velocity fields 
as computed in the rectangular and the circular meshes, respectively. Figures 1 l(a) and 1 l(b) 
represent the respective level line maps of the depth. The differences between both calculations 
can be clearly observed in both sets of pictures. The results produced in the rectangular mesh are 
somewhat squared though a perfect circular symmetry is expected. The advancing front is not 
perfectly circular, and the zone between it and the depression wave shows small but unexpected 
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Figure 9(a). Rectangular mesh used in the circular dambreak test case. 
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Figure 9(b). Circular mesh used in the circular dambreak test case. 
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25 

Figure 10(b). Velocity field computed using the circular mesh. 
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Figure ll(a). Contour plot of the depth computed using the rectangular mesh. 
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Figure ll(b). Contour plot of the depth computed using the circular mesh. 

variations of the depth in the form of four symmetrically distributed kidney-shaped isles. All this 
negative features are not present when the circular grid is used. This simple test case points out 
the mesh dependence of the numerical solutions and strongly recommends the use of grids 
adapted as close as possible to the geometry of the problem. In this sense the finite volume 
formulation used in this paper shows an advantage over classical finite difference methods. 

Finally, a perspective view plot of the free-surface results computed in the rectangular grid is 
shown in Figure 12. The irregularities around the propagating front and in the zone between it 
and the depression wave mentioned above are visible on this picture. It seems that the two 
co-ordinate directions are considered by the scheme as privileged lines. 

6. CONCLUSIONS 

A high-order Godunov-type scheme based on MUSCL variable extrapolation and slope limiters 
is presented for the resolution of 2D free-surface equations, and a finite volume technique of 
integration over body-fitted grids is proposed. 

The construction of an approximate Jacobian of the normal flux function allows conservative 
upwind discretization of the equations for arbitrary cell shapes. This treatment enables efficient 
calculation of subcritical as well as supercritical two-dimensional flows and makes possible 
dealing with surface discontinuities. The main advantage of the model stems from the adapt- 
ability of the grid to the geometry of the problem and the subsequent ability to produce correct 
results near the boundaries. 

Verification of the technique is made by comparison with analytical solutions and very good 
agreement is found. Three cases of rapidly varying two-dimensional flows are presented to show 
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Figure 12. Water surface elevation calculated on the rectangular mesh. 

the efficiency and stability of this method which contains no terms depending on adjustable 
parameters. 
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